Nonlinearity induced topological physics in momentum space and real space
نویسندگان
چکیده
منابع مشابه
Menger probabilistic normed space is a category topological vector space
In this paper, we formalize the Menger probabilistic normed space as a category in which its objects are the Menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. Then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. So, we can easily apply the results of topological vector spaces...
متن کاملTopological Properties of Real Normed Space
In this article, we formalize topological properties of real normed spaces. In the first few parts, open and closed, density, separability and sequence and its convergence are discussed. Then we argue properties of real normed subspace. In the middle of the article, we discuss linear functions between real normed speces. Several kinds of subspaces induced by linear functions such as kernel, ima...
متن کاملInterplay of Real Space and Momentum Space Topologies in Strongly Correlated Fermionic Systems
We discuss the momentum-space topology of 3+1 and 2+1 strongly correlated fermionic systems. For the 3+1 systems the important uni-versality class is determined by the topologically stable Fermi points in momentum space. In the extreme limit of low energy the condensed matter system of this universality class acquires all the symmetries , which we know today in high energy physics: Lorentz inva...
متن کاملmenger probabilistic normed space is a category topological vector space
in this paper, we formalize the menger probabilistic normed space as a category in which its objects are the menger probabilistic normed spaces and its morphisms are fuzzy continuous operators. then, we show that the category of probabilistic normed spaces is isomorphicly a subcategory of the category of topological vector spaces. so, we can easily apply the results of topological vector spaces...
متن کاملTime-Dependent Real-Space Renormalization Group Method
In this paper, using the tight-binding model, we extend the real-space renormalization group method to time-dependent Hamiltonians. We drive the time-dependent recursion relations for the renormalized tight-binding Hamiltonian by decimating selective sites of lattice iteratively. The formalism is then used for the calculation of the local density of electronic states for a one dimensional quant...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Physical Review B
سال: 2020
ISSN: 2469-9950,2469-9969
DOI: 10.1103/physrevb.102.115411